Identification and characterization of a novel A-kinase-anchoring protein (AKAP120) from rabbit gastric parietal cells.
نویسندگان
چکیده
The type-II cAMP-dependent protein kinase (A-Kinase) partitions primarily into the particulate fraction in gastric parietal cells. Localization of this kinase to particular subcellular domains is mediated through the binding of the regulatory subunit (RII) dimer to A-Kinase-anchoring proteins (AKAPs). Using a [32P]RII overlay assay, we have screened a rabbit gastric parietal cell cDNA library and have isolated a single RII-binding protein clone. Sequence analysis revealed an open reading frame coding for 1022 amino acids (AKAP120). Recombinant fragments of the full-length clone were prepared and the RII-binding region mapped to an area between amino acids 489 and 549. This area contained a putative alpha-helical RII-binding region between amino acids 503 and 516. Incubation of [32P]RII with a synthetic peptide of AKAP120-(489-522) completely inhibited the binding of [32P]RII to the recombinant AKAP120 fragments that demonstrated RII binding. In vitro RII-binding affinity studies indicated a high-affinity interaction between AKAP120 and RII with a Kapp between 50 and 120 nM for the three recombinant fragments that bound [32P]RII. RNase-protection analysis revealed that AKAP120 is a widely distributed protein, with the highest levels of mRNA observed in gastric fundus. The presence of this novel high-affinity AKAP in gastric parietal cells suggests that it may regulate RII subcellular sequestration in this cell type.
منابع مشابه
Ezrin is a cyclic AMP-dependent protein kinase anchoring protein.
cAMP-dependent protein kinase (A-kinase) anchoring proteins (AKAPs) are responsible for the subcellular sequestration of the type II A-kinase. Previously, we identified a 78 kDa AKAP which was enriched in gastric parietal cells. We have now purified the 78 kDa AKAP to homogeneity from gastric fundic mucosal supernates using type II A-kinase regulatory subunit (RII) affinity chromatography. The ...
متن کاملLocalization of ClC-2 Cl- channels in rabbit gastric mucosa.
HCl secretion across the parietal cell apical secretory membrane involves the H+-K+-ATPase, the ClC-2 Cl- channel, and a K+ channel. In the present study, the cellular and subcellular distribution of ClC-2 mRNA and protein was determined in the rabbit gastric mucosa and in isolated gastric glands. ClC-2 mRNA was localized to parietal cells by in situ hybridization and by direct in situ RT-PCR. ...
متن کاملMicrobial Cell Surface Display: Its Medical and Environmental Applications
Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them tofunctional components of cells which are exposed to the environment of cells. This strategy can be carriedout using different surface proteins of cells as anchoring motifs and different proteins from different sourcesas a passenger protein. It is a promising strategy...
متن کاملInterleukin 1â and tumour necrosis factor á inhibit acid secretion in cultured rabbit parietal cells by multiple pathways
Background—The cytokines interleukin 1â (IL-1â) and tumour necrosis factor á (TNF-á) are inhibitors of gastric acid secretion when administered systemically. Aims—To investigate the inhibitory eVect of IL-1â and TNF-á on cultured, acid secreting parietal cells in order to determine the mechanism of this inhibition. Methods—Rabbit parietal cells were prepared by collagenase-EDTA digestion and co...
متن کاملCloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450.
A combination of protein kinase A type II (RII) overlay screening, database searches and PCR was used to identify a centrosomal A-kinase anchoring protein. A cDNA with an 11.7 kb open reading frame was characterized and found to correspond to 50 exons of genomic sequence on human chromosome 7q21-22. This cDNA clone encoded a 3908 amino acid protein of 453 kDa, that was designated AKAP450 (DDBJ/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 322 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1997